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The problem of flow past a body of revolution with modeling of a traveling wave on its surface has been
solved. Parametric investigations of the qualitative and quantitative influence of the parameters of the travel-
ing wave on control over the flow past the body of revolution have been carried out.

Introduction. The mechanism of reduction in the hydrodynamic resistance of bodies has been substantiated
theoretically in [1, 2] and has been checked by numerical experiment in [3–5]; this mechanism involves a reorganiza-
tion of flow in which the boundary layer is replaced by periodic flow. A positive answer to the question of whether
periodic flow can be formed by the action of a wave traveling on the body’s surface has been found and the qualita-
tive and quantitative influence of the parameters on control over conical flow has been investigated. In this work,
which is a continuation of [5], in which the velocity of external potential flow was prescribed in the form of a power
function corresponding to flow past conical bodies (including a cylinder and a backward cone), the subject of numeri-
cal experiment has been the model of an axisymmetric body of 20% thickness. This work seeks to investigate the in-
fluence of the parameters of a traveling wave (amplitude, phase velocity, and frequency) on control over flow past a
body of revolution for minimization of its hydrodynamic resistance.

Formulation of the Problem and Method of Its Solution. Numerical modeling is carried out by solution of
the total Navier–Stokes equations in the domain of a "geometric boundary layer" introduced in [5] on a moving com-
putational template which is shifted downstream in solving the entire problem and covers a subdomain as large as two
adjacent surface waves. This approach substantially reduces the computation time with a guaranteed level of numerical
dissipation of solution, since the characteristic Reynolds number is determined from the wavelengths at which the do-
main is decomposed. In the calculations carried out, the lower boundary of the domain was deformed according to the
law of a traveling wave with a variable amplitude. The wavelength changed on each portion of the flow region, since
it was determined by the value of the phase velocity, which was selected in proportion to the flow velocity and
changed together with it.

The computational grid in the physical domain is geometrically adapted to the contour of the body of revolu-
tion and is clustered in its vicinity, whereas in the canonical domain it is rectangular.

The system of nonstationary Navier–Stokes equations is supplemented with boundary conditions at the
boundaries of the templates. We have prescribed the velocity of potential flow at the external boundary, the coinci-
dence of the velocity of motion of the fluid with the velocity of motion of the boundary on the surface of the frame,
the flow parameters equal to their values either at the boundary with the adjacent wave or to the parameters of poten-
tial flow of the body for the first wave, and "soft" boundary conditions at the right boundary.

The Navier–Stokes equations written in the form of conservation laws have been solved by the large-particle
method [6]. The length of the frame was taken as a unit length and the velocity of the incident flow was taken as a
unit velocity. Potential axisymmetric flow past the frame was obtained by solution of the potential equation by the
boundary-element method for the integral equation equivalent to it.

Calculation Results. We carried out a series of parametric calculations in which the varied parameters were
phase velocity, amplitude, position of the amplitude maximum, and angular frequency of the surface wave. Variation
of the phase velocity is determined by the values of the relative (referred to the velocity of potential flow at the run-
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ning point) velocity in the forebody, at the point x∗ , where the wave amplitude is maximum, and in the afterbody.
Variation of the amplitude is determined by its values in the forebody of the frame, at the point x∗ , and in the after-
body of the frame, where it is always prescribed to be equal to zero.

The quantities computed are: work of pressure forces in a unit time per unit surface (energy-flux density),
total work of pressure forces from the beginning to the running point, running energy shortage (gap) in the flux, and
work of friction. The value of the energy shortage at the backward point numerically coincides with half the coeffi-
cient of resistance of the body [2].

A larger growth in the phase velocity was prescribed from the point x∗ , which ensured a change of sign of
the work of pressure forces. Whereas to this point, the energy flux was directed from the fluid to an elastic coating,
after this point the fluid gives energy to the flux.

Since the energy shortage in the afterbody is made up of the work of friction and the work of pressure
forces, minimization of the total work of pressure forces is the condition of minimization of resistance.

Table 1 gives parameters and results of the numerical experiments carried out. The distribution of the parame-
ters of the traveling wave along the chord of the body and of those computed in calculating the characteristics of flow
past the body is given in Fig. 1.

TABLE 1. Parameters and Results of Numerical Experiments

Variant of
calculation Re ω x∗ A0 A∗ Uph ⁄ U0 Uph ⁄ U∗ Uph ⁄ Uf SDe

1 1.0⋅106 6.0⋅104 0.35 5.0⋅10–4 1.0⋅10–3 0.5 1.0 2.0 —6.56⋅10–3

2 1.0⋅106 6.0⋅104 0.35 2.5⋅10–4 5.0⋅10–4 0.5 1.0 2.0 —6.87⋅10–3

3 1.0⋅105 6.0⋅104 0.35 5.0⋅10–4 1.0⋅10–3 0.5 1.0 2.0 —1.50⋅10–2

4 1.0⋅106 3.0⋅104 0.35 1.0⋅10–3 2.0⋅10–3 0.5 1.0 2.0   2.17⋅10–2

5 1.0⋅106 1.2⋅105 0.35 2.5⋅10–4 5.0⋅10–4 0.5 1.0 2.0 —3.57⋅10–2

6 1.0⋅106 3.0⋅104 0.65 1.0⋅10–3 2.0⋅10–3 0.5 1.0 2.0 —9.90⋅10–3

7 1.0⋅106 1.2⋅105 0.25 2.5⋅10–4 5.0⋅10–4 0.5 1.0 2.0 —3.30⋅10–2

8 1.0⋅106 1.2⋅105 0.25 2.5⋅10–4 5.0⋅10–4 0.5 1.0 2.5 —2.85⋅10–2

Fig. 1. Distribution of the parameters and the results of calculation along the
body’s chord of: the amplitude A (1), the phase velocity Uph (2), the sum of
the work of pressure forces SFp (3), the energy shortage of the flux SDe (4),
and the density of the work of pressure forces Fp (5). The dimensionless val-
ues of the indicated quantities are presented on a scale: A⋅1000, Uph⋅1,
SFp⋅20, SDe⋅20, and Fp⋅200.
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A comparison of variants 1 and 2, which differ only in wave amplitude, enables us to infer that a twofold
decreasing the amplitude had only a slight effect on the resistance. This circumstance can be used for decreasing in
the power of internal vibration sources, which are determined by the amplitude squared.

A comparison of variants 1 and 3, which differ only in Reynolds number, shows that the coefficient of resis-
tance decreases with growth in the Reynolds number more rapidly than 1/√Re. This enables us to evaluate the resis-
tance for different values of the Reynolds number.

The influence of the frequency that determines the wavelength on the resistance can be elucidated from vari-
ants 4 and 5. The frequency is equal to 300 rad/sec in the first case and to 1200 rad/sec in the second case. The am-
plitude changed simultaneously with frequency to preserve the amplitude-to-wavelength ratio.

As is seen from the calculations, a twofold decrease in the frequency with simultaneous increase in the am-
plitude resulted in the tractive force. The energy efficiency of such a method of creation of the thrust can be evaluated
only after the loss in the elastic coating has been determined.

A comparison of variants 4 and 6 enables us to reveal the influence of the downstream displacement of the
point x∗  by the value of the resistance for the case where the wavelength is twice as large as the basic value.

A comparison of variants 7 and 8 shows that increase in the phase velocity in the afterbody influences the
resistance only slightly.

CONCLUSIONS

We draw the following conclusions according to the results of the numerical experiments carried out. Just as
for the conical flow considered in [5], a finite-length wave traveling on the surface of the frame of a body of revolu-
tion reorganizes fluid flow so that a stationary periodic flow with closed streamlines (if it is considered in a moving
coordinate system) is formed. Such a flow is characterized by the fact that it is independent of the Reynolds number,
as is the case in Couette annular flow. Mathematically this means that the steady-state solution may be sought for any
Reynolds number only if it is much more than unity. Unlike the fixed boundary, the traveling wave carries out ex-
change of energy with the fluid flow not only due to viscous forces but to pressure forces as well. Depending on the
sign of the velocity gradient and on the relative value of the phase velocity, the energy flux may be directed either
from the traveling wave to the fluid or conversely. The phase velocity in the forebody of the frame must be selected
so that the energy flux is negative (from the fluid flow to the elastic medium). This ensures a growth in the amplitude
and a formation of annular flow. In the afterbody of the frame, the phase velocity must be selected so that the energy
flux is positive (from the elastic boundary to the fluid) and the energy contained in the vibrations of the elastic coat-
ing is used for acceleration of the fluid and keeping the flow from separating. Since the parameters of the surface
wave are determined by the elastic parameters of the coating and the internal vibration sources, a conclusion on the
energy expediency of such a method of reduction in viscous loss is never possible until the work of the internal
sources has been evaluated, which is the subject of further investigations apart from purpose-oriented parametric mini-
mization of the total work of pressure forces.

The author expresses his thanks to V. I. Merkulov for initiation of this work and for consultations during the
course of it.

This work was carried out with support from the Russian Foundation for Basic Research, grant No. 03-01-
00521a.

NOTATION

A0, relative amplitude of the traveling wave at the beginning of the body; A∗ , maximum relative amplitude of
the traveling wave; Fp, density of the work of pressure forces; SDe, value of the energy shortage at the backward
point, which is numerically coincident with half the coefficient of resistance; SFp, sum of the work of pressure forces;
Re, Reynolds number; Uph, phase velocity of propagation of the traveling wave; U0, phase velocity of the traveling
wave at the forward point; U, phase velocity of the traveling wave at the point x∗ ; Uf, phase velocity of the traveling
wave at the end of the body; x∗ , abscissa of the body’s chord where the amplitude of the surface wave attains its
maximum; ω, angular frequency of the wave. Subscripts: 0, initial; f, final; ph, phase.
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